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Abstract 
The appearance of the Monte Carlo simulation method is placed near the year 1944. This method was 
interpreted in many ways, it received various definitions, so we can say that this method knew a long and 
controversial forming and development process. In this article, we shall approach one of the Monte Carlo 
integration methods, namely the „hit or miss” method.What recommends this method for solving a varied 
problems range is the fact that, to obtain the best result, usually a much smaller calculation effort is 
necessary in relation with the problem’s intricacy.  

Keywords: simulation, modelling, stochastic process, random numbers generator, hit or miss  
 
 

The beginnings of the „hit or miss” method 

Knowing the importance and the complexity of the Monte Carlo simulation method, this article 
will present a short history of the method, various interpretations associated to this method over 
the time, the range of problems which can be solved using this method and its fields of 
application. The stress will be laid on one of the integration Monte Carlo methods, namely the 
„hit or miss” method and we shall focus on the advantages of using this method in the solving 
process of certains integrals. The basic idea and the method algorithm shall be presented, after 
which, on the basis of this algorithm, a programme will be achieved for finding an 

approximation of the ∫
1

0

cos xdx  integral. The second application will consist in achieving two 

programmes (one in the Pascal language and one in the C language) in order to find an 

approximation for ∫ =
2

1

)2ln(1 dx
x

 and the data obtained as a result of three consecutive trials for 

each of  these two programmes will be noted in two tables, to be compared and to allow us to 
reach the necessary conclusions.  

The appearance of the Monte Carlo simulation method is placed around the year 1944, although 
it is very likely that the method should have appeared much earlier. This method has been 
invented by the American researchers of „Los Alamos National Laboratory”, where it was used 
for the first time in the simulation process of the neutron behaviour in plutonium or uranium. In 
time various personalities have paid special attention to the study of this method, for instance: 
Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann and Nicholas Metropolis. 
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The method was named so after the Monte Carlo city from the Monaco principality. Clearly, we 
may wonder what the basis of this association of names was.    

The name „Monte Carlo” was given by Nicholas Metropolis during the second world war, when 
he was involved in the Manhattan project, dedicated to building the atomic bomb, because of  
the similarities between the simulation process and the process that developes during gambling 
and because of the fact that Monte Carlo city was the world wide center of roulette games, the 
roulette being a random number generator. Moreover, the random and iterative nature of this 
method is very similar to the activities which take place into a casino.  

Another argument would be that, in those times there was not the technique of the electronical 
generation of the random numbers, numbers which were essential in the nuclear physics studies 
for building the atomic bomb; that is why various methods were used to obtain random numbers 
in large quantities. An example in this sense would be the fact that the American researchers 
from Los Alamos were sending various persons to the casinos from Monte Carlo „to collect” the 
numbers from the roulettes. 

We asserted that the Monte Carlo method appeared much earlier, a first example in this sense 
being the simulation process for estimating the pi number’s value; this experiment was made for 
the first time in the second half of the 19th century. This experiment consisted in throwing away, 
in a purely random manner, a needle upon the surface of a board, on which straight parallel lines 
were drawn. The estimation of the pi value was achieved taking into consideration the number 
of intersections between the needle and the lines drawn. Nowadays, this problem is known as 
the „Buffon’s needle experiment”. 

Another example would be that in 1930, Enrico Fermi used the Monte Carlo method to calculate 
the diffusion of a neutron, and a little later he designed a device named Fermiac, used for error 
estimation in nuclear reactors.  

Various definitions and the application area of the Monte Carlo 
method 

We obviously wonder, what is the Monte Carlo method in fact, what does it consis of? We have 
several possible answers available for this question, namely:  

o It is a method for solving a certain problem by appealing to the random variables, using, in 
order to find the searched solution, multiple random experiments. At this point the 
following remark is necessary: in practice, the usage of multiple random experiments is 
reduced to making certain calculations with random numbers; 

o It is a powerful method which can be aplied to those problems which are hard to solve;  
o It is a game of luck in which the result obtained further to a big number of actions is 

precisely the searched solution;  
o It is a method which uses powerful random numbers generators; 
o It is a method through which the same problem can be solved by different procedures; 
o A method which uses random numbers in a deliberate way in order to make calculations 

which have the structure of a stochastic process; 
o A method whose purpose is to indentify the parameters of a distribution by means of 

observations made on an random variable; 
o A method through which the values of a random variable are generated at random, by using 

a random number generator with a uniform distribution on the [0, 1] interval and of a 
probability distribution associated with the said random variable; 

o A modelling method of the random variables in order to establish their repartition specific 
features, when these specific features cannot be established by analytical expressions on the 
basis of the theoretical probability density functions; 
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o A method by which the real process is replaced with an artificial process, in which, in order 
to obtain the right results, it is necessary that the random variables generated during the 
simulation experiments should accurately reproduce the real random variable.[1] 

The range of problems for which the Monte Carlo method was developed is very wide, 
including, for example, solving the linear equations systems, the inversion of matrices, finding 
the proper vectors and values of a matrix, the calculation of the simple and multiple integrals, 
solving certain problems at the limit from the field of differential equations, etc.  

At present, the applications of the Monte Carlo method find their utility in: cancer therapy, 
forecasts of all type, solving some traditional physics problems, such as the planets evolution 
and designing the nuclear reactors. Likewise, the Monte Carlo method is used, in an excessive 
way, in the processes of modelling the chemical materials and products, modelling the metallic 
alloys and the analysis of polimer structure. 

An interesting application of random numbers consists in calculating the integrals with the so-
called Monte Carlo method. There are four integration methods so called Monte Carlo, namely: 
the incidence method, also known as the „hit or miss” method, the average poll method, the 
varied check method and the varied antithetic method.  

The fundamental idea of the „hit or miss” method 

Let us have a continuous function f(x), defined on [0, 1], so that 1)(0 ≤≤ xf . We want to 

calculate the next integral: ∫
1

0

)( dxxf . We have the next graphic representation for f(x) function: 

 
Fig. 1. The surface limited by the f(x) function graphic and the coordinate axes 

In accordance with the drawing above, it was marked with A the surface limited by the f(x) 
function graphic and the coordinate axes, a surface defined as follows: A={(x, y)| )(xfy ≤ }. We 

can easily notice that, from the geometric point of view, ∫
1

0

)( dxxf  represents the area of the 

surface A. To calculate this integral, through the Monte Carlo method, we shall use the uniform 
random variable. We shall consider U and V  two independent random variables, with a uniform 
repartition on the [0, 1] interval. We suppose that we have a sample available, formed  

of n independent observations of the (U, V ) pair, in other words, we have the {( u1, v1 ), ( u2, v2 
), …, ( un, vn )} sequence available, formed of n pairs of random numbers with a uniform 
distribution in the rectangle from the figure above.  We shall note with nrA  the number of those 
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pairs of  the sample above which belong under the f(x) graphic. The ratio nrA/n is known under 

the name of „hit or miss estimator” of the integral ∫
1

0

)( dxxf . 

Starting from the above, the algorithm which underlies the „hit or miss” method, is the 
following:  

o We have n pairs of random numbers (ui, vi ) available, with i= 1, 2, …, n, pairs with a 
uniform repartition in the rectangle from the figure above;  

o We shall consider, the (ui, vi ) pairs, for which vi ≤ f(ui) and we shall note their number with  
nrA;  

o The value of the ratio nrA/n represents the „hit or miss estimator” of the integral ∫
1

0

)( dxxf . 

The advantages of using the „hit or miss” method in the solving 
process of certain integrals 

Next, a C programme is presented, made after the algorithm above, in order to calculate the 

integral ∫
1

0

cos xdx .  

 
Fig. 2. The region between the x-axis and the graph of cos(x) on the interval [0,1] 

 
//The „hit or miss” method 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
double Hit_or_Miss( int N ) 
  {int NoundergraphA=0; 
   double x,y; 
   for(int i=0;i<N;i++) 
    {x=(double)rand( )/RAND_MAX; 
     y=(double)rand( )/RAND_MAX; 
     if(y<=cos(x)) 
     Nounde
    } 
  return(double)NoundergraphA/N; 
  } 

void main(void) 
{clrscr(); 
int N; 
printf("The Monte Carlo1 method-
The Hit_or_Miss method"); 
printf("\nYou have to introduce 
the number of pairs from the 
rectangle="); 
scanf("%d",&N); 
printf("The approximate value of 
the integral is 
%lf",Hit_or_Miss(N)); 
getch(); 
} 
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In the N variable, we retain the number of random numbers pairs with a uniform distribution in 
our rectangle. From the total of N random numbers pairs, we count in the variable 
NoundergraphA, those pairs which verify the relation )cos(xy ≤ . For a sufficiently big N, the 
integral value is approximated by the NoundergraphA/N ratio. The x and y variables are used to 
obtain those two random numbers rows, with a uniform distribution on the interval [0, 1]. 

According to the following results, the programme is performed three times, using different 
values for variable N. [2, 3] 

 
The Monte Carlo1 method-The Hit_or_Miss method  
Introduce the number of pairs from the rectangle= 10000 
The approximate value of the integral is 0.843500 
The Monte Carlo1 method-The Hit_or_Miss method  
Introduce the number of pairs from the rectangle= 15000 
The approximate value of the integral is 0.844867 
The Monte Carlo1 method-The Hit_or_Miss method  
Introduce the number of pairs from the rectangle=1000000 
The approximate value of the integral is 0.845401 
 

We can notice that the approximation obtained for the integral value in question is so much the 
better since the number of pairs with a uniform distribution in the rectangle, namely N, is 
greater. 

The second application consists in the approximation of the area of a region located between the 
x-axis and the graph of the curve xy /1= on the interval [1, 2]. This signifies that we shall find 

an approximation for the integral ∫ =
2

1

)2ln(1 dx
x

. On the interval [1, 2], the curve xy /1=  fulfil 

the relation 110 ≤≤
x

. For this reason, the region which interests us is inside a rectangle with the 

area equal to 1, bounded by x=1, x=2, y=0 şi y=1. The value ln(2) is approximated by random 
generating (x, y) pairs which satisfy the relations 21 ≤≤ x  and 10 ≤≤ y . Then, we retain those 
generated pairs which satisfy the condition xy /1≤ .   

 

 
Fig. 3. The region between the x-axis and the graph of the curve y=1/x on the interval [1, 2] 
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To solve this application, we shall build two programmes, one in the Pascal language, the other 
in the C language, after which we shall analyze the results obtained.  

For each of these two programmes, we are making two tables, in which we note the results 
obtained after three consecutive trials, and for each step (for n=1, 2, 4, 8, …) we do the average 
of the values obtained after these three trials.   

These two programmes below provide a sequence of approximations of the said integral value, 
by reduplication of the n value.    

 
The Hit_or_Miss1_Pascal programme; 
uses crt; 
var step:integer; 
    x,y,ValInteg:real; 
    NoundergraphA:longint; 
    n,i:longint; 
begin 
clrscr; 
for step:=0 to 20 do 
begin 
n: =1; 
for i:=1 to step do 
n: =n*2; 
NoundergraphA: =0; 
randomize; 
for i:=0 to n-1 do 
 

Begin 
x: =random+1; 
y: =random; 
if y<=1/x then 
   NoundergraphA:= NoundergraphA 
+1; 
end; 
writeln(' The number of pairs 
under the function graph is ', 
NoundergraphA); 
ValInteg: = NoundergraphA/n; 
writeln(n,' The integral value is 
',ValInteg:0:6); 
readln; 
end; 
end. 

 
 

Table 1. The results obtained in Pascal after three consecutive trials for ln(2) using the programme 

 
 
 
 
 
 
 

Trials for  n=1,2,4,8,… Trial 1 Trial 2 Trial 3 Average 
n=1 
n=2 
n=4 
n=8 
n=16 
n=32 
n=64 

n=128 
n=256 
n=512 
n=1024 
n=2048 
n=4096 
n=8192 

n=16384 
n=32768 
n=65536 
n=131072 
n=262144 
n=524288 

n=1048576 

1.000000 
1.000000 
0.500000 
0.875000 
0.562500 
0.625000 
0.718750 
0.632813 
0.648438 
0.691406 
0.700195 
0.677246 
0.689453 
0.690552 
0.687622 
0.690582 
0.691818 
0.692406 
0.694290 
0.692245 
0.693000 

1.000000 
0.500000 
0.750000 
0.625000 
0.562500 
0.562500 
0.640625 
0.664063 
0.687500 
0.712891 
0.693359 
0.704590 
0.681885 
0.682251 
0.692444 
0.689880 
0.696793 
0.692169 
0.692619 
0.693340 
0.693407 

1.000000 
1.000000 
0.500000 
0.500000 
0.625000 
0.718750 
0.625000 
0.757813 
0.683594 
0.642578 
0.689453 
0.706055 
0.695557 
0.699097 
0.696838 
0.694672 
0.693069 
0.692688 
0.693130 
0.692520 
0.692794 

1.000000 
0.833333 
0.583333 
0.666667 
0.583333 
0.635417 
0.661458 
0.684896 
0.673177 
0.682292 
0.694336 
0.695964 
0.688965 
0.690633 
0.692301 
0.691711 
0.693893 
0.692421 
0.693346 
0.692702 
0.693067 
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//The Hit_or_Miss1_C programme 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
int step; 
float x,y,ValInteg; 
long int NoundergraphA; 
long int n,i; 
void main(void) 
{clrscr(); 
for(step=0;step<=20;step++) 
 {n=1; 
  for(i=1;i<=step;i++)  n=n*2; 
  NoundergraphA=0; 
  randomize(); 
 

  for(i=0;i<n;i++) 
  {x=(float)rand()/RAND_MAX+1; 
   y=(float)rand()/RAND_MAX; 
   if(y<=1/x) NoundergraphA++; 
   } 
printf("\nThe number of pairs 
under the function graph is %ld", 
NoundergraphA); 
  ValInteg=(float)NoundergraphA/n; 
printf("\nFor n=%ld the 
approximative value of the 
integral is %f",n,ValInteg); 
  } 
  getch(); 
 } 
 

 
Table 2. The results obtained in C after three consecutive trials for ln(2) using the programme 

 
We know that ln(2) ≈ 0.6931, which is exactly the value that we must obtain. From table1, 
obtained through the compiling of the programme written in the Pascal language, we see that the 
aproximative value of ln(2) is 0.693067, and by rounding off this value, we obtain that the value 
of ln(2) ≈ 0.6931.   

From table2, obtained through the compiling of the programme written in the C language, we 
see that the approximative value of ln(2) is 0.692979, value which is not so great as the value 
obtained by compiling the programme written in the Pascal language.[4, 5, 6]  

Conclusions 

The conclusion we can draw from the remark above would be that, when we have to solve a 
certain problem, from the multitude of programming languages available, we must choose that 
language which can provide us the best solutions in the shortest time.  

As seen in the beginning of this article, in time, this method was interpreted in many ways, it 
received various definitions, specific features, concepts, so we can say that this method has 
brought to light a long and controversial forming and development process.  

We can say that this method, in its rudimentary form, was very much used along the centuries, 
but only in the past decades has it seen a fast „growing-up”, enough to solve the most 
sophisticated applications with this method.   

Trials for  n=256,512,1024, …    Trial 1    Trial 2    Trial 3  Average 
n=256 
n=512 
n=1024 
n=2048 
n=4096 
n=8192 

n=16384 
n=32768 
n=65536 
n=131072 
n=262144 
n=524288 
n=1048576 

0.726562 
0.683594 
0.685547 
0.679199 
0.687256 
0.693848 
0.697388 
0.695435 
0.696091 
0.694458 
0.693958 
0.693396 
0.692236 

0.718750 
0.695312 
0.668945 
0.682617 
0.680664 
0.687378 
0.689697 
0.691956 
0.692078 
0.695168 
0.695122 
0.693481 
0.693190 

0.765625 
0.734375 
0.705078 
0.709961 
0.698486 
0.697266 
0.697083 
0.693573 
0.694168 
0.693001 
0.693153 
0.693541 
0.693511 

0.736979 
0.704427 
0.686523 
0.690592 
0.688802 
0.692831 
0.694723 
0.693655 
0.694112 
0.694209 
0.694078 
0.693473 
0.692979 
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What recommends this method for solving a wide range of problems is the fact that in order to 
obtain the best result, usually a much smaller calculation effort is necessary in relation with the 
problem’s intricacy, as compared to other determinist methods.  

In the end, we must say that the development of this method has been practically impossible 
without the use of modern computers. The processing of an enormous volume of information, 
which makes this method very efficient, suposses the existence of last generation machines, 
which can process a very big number of particular cases and then make the statistical processing 
of the numerical data obtained. 
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Calculul integralelor folosind metoda Monte Carlo 

Rezumat 
Apariţia metodei de simulare Monte Carlo este plasată în jurul anului 1944. Această metodă a cunoscut 
multe interpretări, a primit definiţii variate, prin urmare putem afirma că această metodă a parcurs un 
lung şi controversat proces de formare şi dezvoltare. În acest articol, vom prezenta una dintre metodele 
de integrare Monte Carlo, cunoscută sub numele de metoda „hit or miss”.Ceea ce recomandă utilizarea 
acestei metode  în rezolvarea unei game variate de probleme este faptul că, pentru a obţine cel mai bun 
rezultat, este necesar un efort de calcul mic în comparaţie cu dificultatea problemei. 


